SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities
1.7	Form of education	Full time
1.8	Subject code	4.00

2. Data about the subject

2.1	Subject name			Advanced Architecture				
2.2	2.2 Subject area			Architecture and Civil Engineering				
2.3	Course responsible/lecturer			Associate Professor Arch. Şerban Ţigănaş PhD				
2.4	2.4 Teachers in charge of seminars			Lecturer Arch. Paul Mihai Moldovan PhD				
2.5 \	Year of study	1	2.6 Semester	1	2.7 Assessment	E	2.8 Subject category	DC/DS

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar	-	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	ıy					2	4
(b) Supplementary study in the library, online and in the field							7			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	.4			
(d) Tutoring										-
(e) Exams and tests							2			
(f) Other activities						-				
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 47						•				
3.9 Total hours per semester (3.4+3.8)										

3.8 Total hours of individual study (sum (3.7(a)3.7(f)))	47
3.9 Total hours per semester (3.4+3.8)	75
3.10 Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	Bachelor's in civil engineering, or Building Services Engineering, or Architecture, or Urbanism
4.2	Competence	Technical and Humanistic competences

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre B-dul 21 December Nr.128-130, Cluj-Napoca
5.2	For the applications	Amphitheatre B-dul 21 December Nr.128-130, Cluj-Napoca

6. Specific competences

Professional	Competences	- - -	Involvement of the building services engineer in conceiving the design brief Development of the humanistic component of engineering Development of collaborative skills based on the role of the engineer in digital integrated design processes
Cross	competences		Interdisciplinary perspective implementation in building design Strategic planning skills for advanced investment objectives Integration capacity of advanced technologies in building design

7. Discipline objectives (as results from the key competences gained)

7.1	Conoral phineting	A comprehensive perspective on the new paradigm in				
7.1	General objective	construction				
7.2	Specific objectives	 A contemporary understanding of architecture as a holistic integrating discipline An alignment of different construction professions into an advanced interdisciplinary process Building a foundation for interdisciplinary advanced design Integration of building services engineering in the conception and development of construction projects Understanding of the future role of building services engineering 				

8. Contents

8.1.	Lecture (syllabus)	Number of hours	Teaching methods	Notes
1.	Architecture Today – An Introduction	1		
2.	Form and Function, the Essential Binome	1		
3.	Design Thinking – Design Process	1		
4.	RE-Inventing construction – A Change of Paradigm	1		
5.	Hi-Tech, Low-Tech or a Smart combination?	1		
6.	Advanced Architecture – A Dictionary of Terms	1		
7.	Elements of Architecture – Floor, Ceiling, Wall	1	Presentation and	Video-
8.	Elements of Architecture – Roof, Window, Facade	1	debate	projector
9.	Elements of Architecture – Stair, Ramp, Escalator,	1	uebate	projector
9.	Elevator			
10.	Elements of Architecture – Fireplace, Toilet	1		
11.	Permanence, Ephemerity and Life Cycle	1		
12.	Advanced Architectural Programs	1		
13.	The 17 Sustainable Development Goals in Architecture	1		
14.	Case Studies, Recent Experiences	1		

Total:			14		
	Bibliography	:			
	- F - E	Designing the Profile of the Future Are Movilă, Eusebia Mindirigiu, 2019 Re-Inventing Construction – Ilka and A Ephemeral Urbanism. Does permaner Vera with Jose Mayoral, 2017 Smart Cities: Big Data, Civic Hakers, an Fownsend, 2014	Andreas Rub	oy, 2010 – Rahul Mehrotra a	and Felipe

0 2	8.2. Applications/Laboratory		Teaching methods	Notes	
0.2.	Applications/ Laborator y	of hours	reaching methods	Notes	
1.	Architecture and Engineering in the History of	1			
1.	Construction part 1				
2.	Architecture and Engineering in the History of	1			
۷.	Construction part 2				
3.	Design Process in examples	1			
4.	Digital Shift in Design – Software for Building Design and	1			
4.	Architecture				
5.	Low – Tech Case studies	1			
6.	Low – Tech Case studies	1	Presentation	Video-	
7.	Elemente of Architecture – Case Studies part 1	1	and debate	projector	
8.	Elemente of Architecture – Case Studies part 2	1			
9.	Elemente of Architecture – Case Studies part 3	1			
10.	Advanced Architecture Worldwide part 1	1			
11.	Advanced Architecture Worldwide part 2	1			
12.	Advanced Architecture in Romania part 1	1			
13.	Advanced Architecture in Romania part 2	1			
14.	Evaluation				
Tota	al:	14			

Bibliography:

- The Metapolis Dictionary of Advanced Architecture: city, technology and society i the information age Manuel Gausa, Vicente Guallart, Willy Muller, Federico Soriano, Fernando Porrsa, Jose Morales
- An Architectural Guide to the UN 17 Sustainable Development Goals Natalie Mossin (chief editor), 2019
- Elements of Architecture, Rem Koolhaas, 2014

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences accumulated are necessary to activate the graduates in design activities, realization of buildings, consultancy and sales to meet the employers' requirements.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
Course	Knowledge testing from course and bibliography	Oral examination	50%
Applications	Knowledge testing and skills accumulated by applications	Written test	50%

10.4 Minimum standard of performance

Students need to pass the application test to be accepted at the examination.

The components of the final grade are Examination (E) and Application lab (L).

Therefore, the formula for the final grade calculation is G=0.5xE+0.5xL.

The 3 credits are obtained if both E and L are rewarded with minimum 5

Date of filling in:		Title Surname Name	Signature
26.06.2023	Lecturer	Assoc.prof.PhD.arch. Dragos Şerban ŢIGĂNAŞ	
	Teachers in charge of application	Lec.PhD.arch. Paul Mihai MOLDOVAN	

Date of approval in the Department of Building Services Engineering Head of department Assoc.Prof.PhD.Eng. Carmen MÂRZA

29.06.2023

Dean

Date of approval in the Council of the Faculty of Building Services

Engineering

Assoc.Prof.PhD.Eng. Florin DOMNIŢA

29.06.2023