SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	9.00

2. Data about the subject

2.1	Subject name				Indoor environmental quality and well-being			
2.2	2 Course responsible/lecturer Lect.Pt				Lect.PhD.Eng. Tania	.ect.PhD.Eng. Tania RUS - tania.rus@insta.utcluj.ro		
2.3	Teachers in ch	achers in charge of seminars			Lect.PhD.Eng. Tania RUS - tania.rus@insta.utcluj.ro			
2.4	2.4 Year of study 1 2.5 Semester 2 2.6 Assessment Exam							
2.7 9	2.7 Subject Formative category						DS	
cate	category Optional						DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2	2	3.3		3.3	1	3.3	
		•••••••	Course		Seminar		Laboratory		Project	
3.4 Total hours in the curriculum	42	of which	3.5	28	3.6		3.6	14	3.6	
5.4 Total hours in the curriculum	42	or which	Course	20	Seminar		Laboratory	14	Project	
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography							2	1		
(b) Supplementary study in the library, online and in the field							1	5		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	4			
(d) Tutoring						(5			
(e) Exams and tests										2
(f) Other activities										
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 58										
3.9 Total hours per semester (3.4+3.8) 100										
3.10 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Bachelor's degree
4.2 (Competence	Principles of heating installations; Principles of ventilation and air
4.2	Competence	conditioning installations; Principles of lighting installations.

5. Requirements (where appropriate)

5.1	For the course	Classroom equipped with Video Projector - 21 December 1989 Blvd., no. 128-130
5.2	For the applications	Laboratory room I01 - 21 December 1989 Blvd., no. 128-130

Laboratory

6. Specific competences

	Th	eoretical knowledge:
		- Specific notions of heating installations;
		- Specific notions of ventilation and air conditioning installations;
		- Specific notions of lighting installations.
Ś	Ac	quired skills:
nce		- To evaluate the quality of the indoor environment depending on the destination of the
etel		building and the typology of the occupants;
Professional competences	2	- To evaluate the thermal comfort of a building;
S	3	- To evaluate the quality of the indoor air of a building;
		- To evaluate the quality of lighting.
	Ski	lls acquired:
		- To use equipment and tools for monitoring the quality of the indoor environment;
		- To propose solutions of improvement of the indoor environment quality.
SS	n To	demonstrate a creative and enterprising spirit in complex problem solving.
Cross competences	Us	e of references in a foreign language, for professional and personal development, through
Cross	col	ntinuous formation and efficient adaptation to new technical specifications.
) imo	5	
ŏ		

7. Discipline objectives (as results from the key competences gained)

		Development of skills in the field of indoor environment quality
7.1	General objective	evaluation of a building and to propose solutions of improvement
		with an emphasis on the needs of the occupants.
		To establish the parameters and calculation assumptions of
		imposed requirements;
		To identify the technical non-conformities and the needs of
7 2	Capacifia abiantivas	functional and energetic rehabilitation / modernization;
7.2	Specific objectives	To use the basic concepts and engineering calculation methods to
		solve the practical problems imposed using installations in
		constructions;
		To use methods and programs to transmit information.

8. Contents

8.1. Lecture (syllabus)		Teaching	Notes	
8.1. Lecture (synabus)	of hours	methods	NOLES	
1. Introduction in indoor environmental quality (IEQ)	2	Video-Projector		
2. Standards for IEQ evaluation	2	Teaching style		
3. Hygro-thermal environment – temperature, humidity and air	2	based on the		
velocity		interactive		
4. Thermal comfort assessment	2	teacher-student		
5. Occupant responses to thermal comfort/discomfort	2	partnership;		

6. Interaction between outdoor climate and thermal comfort	2	Presentation of
7. Indoor air quality – indoor ventilation	2	case studies.
8. Indoor air quality – contaminants	2	
9. Indoor air quality – occupant satisfaction	2	
10. Visual environment – natural/artificial lighting	2	
11. Acoustic environment	2	
12. Biophilia	2	
13. Well-being and human values	2	
14. Regenerative objectives for IEQ	2	

Bibliography

1. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), (2013). ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy. Atlanta; 2. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), (2016). ANSI/ASHRAE Standard 62-1. Ventilation for Acceptable Indoor Air Quality. Atlanta;

3. CEN, (2019). UNI EN 16798-1: Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels, European Committee for Standardization;

4. World Health Organization – Air quality guidelines for Europe, 2000;

5. CEN, (2004). UNI EN 12464-1: Light and lighting. Lighting of workplaces. Part 1: Indoor workplaces. Brussels, European Committee for Standardization.

6. U.S. Environmental Protection Agency (1990). (EPA) (b), Facts About Formaldehyde [Online]. Retrieved from <u>https://www.epa.gov/formaldehyde/facts-about-formaldehyde#whatisformaldehyde</u>

7. U.S. Environmental Protection Agency. (1990). (EPA) Particulate Matter (PM) Basics. Retrieved from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

8. U.S. Environmental Protection Agency. (1990). (EPA) (d), Indoor Particulate Matter. Retrieved from <u>https://www.epa.gov/indoor-air-quality-iaq/indoor-particulate-matter</u>

9. U.S. National Institute for Occupational Safety and Health. (2018). (NIOSH), Pocket Guide to Chemical Hazards. Retrieved from <u>https://www.cdc.gov/niosh/npg/default.html</u>

10. U.S. Occupational Safety and Health Administration (OSHA) (2020), Code of Federal Regulations. Retrieved from https://www.graphicproducts.com/articles/osha-29-cfr-1910/

11. Naboni, E., & Havinga, L. C. (2019). Regenerative Design in Digital Practice: A Handbook for the Built Environment. EURAC Research. Retrieved from https://www.buildup.eu/en/practices/publications/ regenerative-design-digital-practice-handbook-built-environment

8.2. Laboratory	Number	Teaching methods	Notes
	of hours		
1. Assessment of the hygro-thermal environment –	2		
temperature, humidity and air velocity		T	
2. Objective and subjective thermal comfort computation	2	Teaching style	
3. Indoor air-quality: measurements of the chemical and	2	based on the interactive	
natural contaminants		teacher-student	
4. Evaluation of the visual environment	2	partnership;	
5. Evaluation of the acoustic environment	2		
6. Assessment of the indoor environmental quality	2		
7. Recovery of laboratory	2		
Bibliography			

1. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), (2013). *ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy*. Atlanta;

2. CEN, (2005). EN ISO 7730: Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort

criteria. Brussels, European Committee for Standardization;

3. CEN, (2019). UNI EN 16798-1: Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels, European Committee for Standardization;

4. World Health Organization (WHO) (2000). Air Quality Guidelines for Europe. Second Edition

5. World Health Organization – Air quality guidelines for Europe, 2000;

6. International Well Building Institute (IWBI), (2019). The Well Building Standard

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity in design, execution and maintenance.

10. Evaluation

	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in the				
Activity type	10.1 Assessment citteria	methods	final grade				
10.4 Course	The exam consists in verifying the theoretical	Written exam	75%				
10.4 Course	and practical knowledge acquired	whiten exam	15/0				
	Completion and submission of laboratory	Submission of					
10.5 Laboratory	papers conditions the entrance to the exam.	laboratory	25%				
	papers conditions the entrance to the exam.	papers					
10.6 Minimum st	andard of performance						
Participation in th	Participation in the laboratory conditions the entrance to the exam.						
Exam grade components (E); Laboratory (L); Calculation formula of the grade G = 0.75 × E + 0.25 × L							
Condition for obt	aining credits: G> 5.0; where E> 5.0, L> 5.0						

Date of filling in:		Title Surname Name	Signature
26.06.2023	Lecturer	Lect.PhD.Eng. Tania RUS	
	Teachers in charge of application	Lect.PhD.Eng. Tania RUS	

Date of approval in the Department of Building Services Engineering	Head of department Assoc.Prof.PhD.Eng. Carmen MÂRZA
29.06.2023	
Date of approval in the Council of the Faculty of Building Services Engineering	Dean Assoc.Prof.PhD.Eng. Florin DOMNIJA
29.06.2023	