SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	11.00

2. Data about the subject

2.1	Subject name				Energy Analysis of a	Building / City	
2.2	Course responsible/lecturer				Lecturer Dr. Eng. Andrei CECLAN		
2.3	Teachers in charge of seminars				Lecturer Dr. Eng. Andrei CECLAN		
2.4 Year of study II 2.5 Semester I			ı	2.6 Assessment		Exam	
2.7 Subject Formative category			,			DS	
category Optionality						DI	

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	-	3.3 Laboratory	1	3.3 Project	-
3.4 Total hours in the curriculum	28	of which	3.5 Course	14	3.6 Seminar	_	3.6 Laboratory	14	3.6 Project	-
3.7 Individual study:		•					•			
(a) Manual, lecture materia	l and	notes, bib	liograph	ıy					1	.0
(b) Supplementary study in the library, online and in the field							1	.0		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	.8			
(d) Tutoring							(6		
(e) Exams and tests							3	3		
(f) Other activities								-		
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 47							·			
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge related to energy, electrotechnics, thermo-
		technics, civil engineering and renewable energy sources.
4.2	Competence	Electrical, gas, thermal, water and water sewage installations.

5. Requirements (where appropriate)

5 4	Fautha aguraa	Classroom equipped with blackboard and Video Projector - 21
5.1	For the course	December 1989 Blvd., no. 128-130

5.2 For the applications project	For the applications project	Classroom equipped with blackboard and Video Projector - 21
	For the applications project	December 1989 Blvd., no. 128-130

6. Specific competences

onal	competences	The ability to use specific energy analytics instrumentation and to manage on both energy use and generation at buildings level and local regenerative communities level, on different energy users and energy carriers.					
Professional	pete	The ability to elaborate energy efficiency action plans and programs, energy management actions					
Prof	com	to be put in practice at buildings, utilities infrastructure and local communities level.					
		The ability to calculate energy consumptions in buildings for different facilities and energy					
		productions for renewable sources.					
		The ability to have an enhanced understanding of the energy impact on the local public utility					
	ces	services, buildings and their interaction in the regenerative cities.					
SS		The ability to identify and foster opportunities and detail energy efficiency and energy					
Cross	mpeten	management solutions.					
	con	Competences of synthesis and integration of contents from various engineering disciplines,					
		through a holistic approach to the energy of buildings, from an energy perspective.					

7. Discipline objectives (as results from the key competences gained)

		Evidenced based knowledge transfer and case study-based
		experiences regarding the energy management in both (non)
7.1	General objective	regenerative cities, to empower the participants to act as local
		Energy Auditors. Prepare participants with skills similar to those
		of certified Energy Auditors and certified Energy Managers.
7.2	Specific objectives	Integrative knowledge of the local energy generation and use in the regenerative cities. Knowledge of the legislation and authorities involved in the energy management in local communities, respectively of the role of energy audit and of energy management for local communities. The ability to effectively use energy management tools and implement energy efficiency solutions. Financing, energy performance contracting.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Course 1. Analysis of energy need and real consumption in buildings for heating and for domestic hot water	2	Debates on available for the	
Course 2. Analysis of energy need and real consumption in buildings for cooling and for mechanical ventilation	2	student's materials and	
Course 3. Analysis of energy production / consumption in buildings provided by solar collectors — thermal and electricity — heat pumps, combined heat and power units, wind-mills	2	contents. Sessions of questions and answers.	

Course 4.		Case studies
Site surveys in energy evaluation of buildings for deep	2	presentations.
renovation purposes – procedures, steps, instrumentation,	2	Use of online
case studies and examples		interactive
Course 5.		instruments –
Preparation of an energy efficiency action plan for the deep	_	mentimeter – use
renovation of a building – life cycle cost-benefit assessment,	2	of power point
energy savings, cost savings, emissions reduction		presentations and
Course 6.		board writing
Technical (energy) and financial due diligence evaluation for	2	Practical
buildings for financing purposes, buildings acquisition and		examples of
energy performance implementation projects		energy analytics
Course 7.		tools.
Digitalized and distributed energy services for buildings and		
their interaction with the utilities and mobility – research	2	
and innovation demo pilots presentation from several		
implemented Horizon 2020 projects.		

Bibliography

- Guide to Energy Management, Eighth Edition 8th Edition, Barney L. Capehart, Wayne C. Turner, William J. Kennedy, The Fairmont Press, USA, 2016.
- Energy Management Handbook, Wayne C. Turner and Steve Doty (Editors), The Fairmont Press, USA 2006.
- Total Energy Management Handbook, Kazuhiko Yoshida (Editor), Energy Conservation Center Japan, 2005.
- Energy Management in Buildings, Keith Moss, Taylor & Francis, 2006.
- Building Energy Management Systems, Geoff Levermore, Taylor and Francis 2000.
- Managing Indoor Environments and Energy in Buildings with Integrated, Triantafyllia Nikolaou, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou, Corneliu Munteanu, Springer, 2015. Managementul energiei electrice. Aplicații, Andrei C. Cziker, Mircea Chindriș, Casa Cărții de Știință, Cluj-Napoca, 2004.

8.2. Project	Number of hours	Teaching methods	Notes
Lab 1 Calculation of energy consumption for heating and for domestic hot water in a residential building	2	Debates on available for the	
Lab 2 Calculation of energy consumption for cooling and for mechanical ventilation in an office building	2	student's materials and contents.	
Lab 3 Calculation of energy production for domestic hot water consumption using solar collectors	2	Sessions of questions and answers.	
Lab 4 Instrumentation for site surveys and energy measurements and indoor comfort parameters evaluation in buildings	2	Case studies presentations. Use of online	
Lab 5 Description, design and calculation of different energy efficiency and renewable energy sources solutions in buildings	2	interactive instruments – mentimeter – use of power point	
Lab 6	2	21 211 21 21 21	

Energy analytics for life cycle cost-benefit assessments for		presentations and	
energy savings, cost savings, emissions reduction		board writing	
Lab 7	2	Practical examples of	
Results integration in the project, using all the previous tools and programs	2	energy analytics	
		tools.	

Bibliography

- Guide to Energy Management, Eighth Edition 8th Edition, Barney L. Capehart, Wayne C. Turner, William J. Kennedy, The Fairmont Press, USA, 2016.
- Energy Management Handbook, Wayne C. Turner and Steve Doty (Editors), The Fairmont Press, USA 2006.
- Total Energy Management Handbook, Kazuhiko Yoshida (Editor), Energy Conservation Center Japan, 2005.
- Energy Management in Buildings, Keith Moss, Taylor & Francis, 2006.
- Building Energy Management Systems, Geoff Levermore, Taylor and Francis 2000.
- Managing Indoor Environments and Energy in Buildings with Integrated, Triantafyllia Nikolaou, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou, Corneliu Munteanu, Springer, 2015. Managementul energiei electrice. Aplicații, Andrei C. Cziker, Mircea Chindriș, Casa Cărții de Știință, Cluj-Napoca, 2004.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The preparation and periodical update of the course will take into account the existent curricula at international level, the consultation of relevant professional associations and authorities, the legal frame evolution and national and international implemented projects in energy, energy efficiency and energy audit and management in local communities.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the
			final grade
10.4 Course	Oral and written	Individual interviews and quiz	40%
	evaluation	individual interviews and quiz	
10.5 Seminars	Laboratory avaluation	Writton tost	60%
/Laboratory/Project	Laboratory evaluation	Written test	

10.6 Minimum standard of performance

Participation at the courses – minimum 80% of the available time and full presence in the laboratory meetings as conditions to enter to the exam.

Evaluation grade (G); Course (C); Laboratory (L); Calculation formula of the grade $G = 0.4 \times C + 0.6 \times L$ Condition for obtaining credits: G > 5.0; where C > 5.0, L > 5.0.

Date of filling in: 26.06.2023		Title Surname Name	Signature
	Lecturer	Lecturer Dr. Eng. Andrei CECLAN	
	Teachers in charge of application	Lecturer Dr. Eng. Andrei CECLAN	

Date of approval in the Department of Building Services
Engineering

29.06.2023

Date of approval in the Council of the Faculty of Building
Services Engineering

Dean
Assoc.Prof.PhD.Eng. Carmen MÂRZA

Dean
Assoc.Prof.PhD.Eng. Florin DOMNIŢA