SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	15.00

2. Data about the subject

2.1	Subject name				Urban Network Mar	nagement		
					Assoc.Prof. PhD.Eng. Ciprian BACOŢIU -			
2.2	Course respon				ciprian.bacotiu@ins	ta.utcluj.ro		
2.2					Assoc.Prof. PhD.Eng	Assoc.Prof. PhD.Eng. Ancuţa ABRUDAN-		
					ancuta.abrudan@insta.utcluj.ro			
2 2	Teachers in charge of seminars				Senior Lecturer PhD.Eng. Cristina IACOB -			
2.5					cristina.iacob@insta.utcluj.ro			
2.4 Y	2.4 Year of study 2 2.5 Semester 1		2.6 Assessment	Exam				
2.7 5	2.7 Subject Formative category			,			DA	
cate	category Optionality status						DI	

3. Estimated total time

3.1 Number of hours per week	4	of which	3.2	2	3.3 Seminar		3.3	2	3. Proi	3 oct	
	50		3.5	20	3.6		3.6	20	3.	6	
3.4 Total hours in the curriculum	56	of which	Course	28	Seminar		Laboratory	28	Proj	ect	
3.7 Individual study:											
(a) Manual, lecture material and notes, bibliography							2	8			
(b) Supplementary study in the library, online and in the field							1	9			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							2	0			
(d) Tutoring							-	-			
(e) Exams and tests										2	2
(f) Other activities										-	-
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 69											
3.9 Total hours per semester (3.4+3.8) 125											
3.10 Number of credit points 5											

4. Pre-requisites (where appropriate)

4.1	Curriculum	B.Sc. Engineering Diploma
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	128-130, 21 Decembrie 1989 Blvd., Auditorium A1, Cluj-Napoca
5.2	For the applications Laboratory	128-130, 21 Decembrie 1989 Blvd., CAD Lab, Cluj-Napoca

6. Specific competences

		Theore	etical knowledge about:
		-	GIS paradigm;
		-	Urban water distribution networks;
_	S	-	Urban sewerage networks;
ona	nce	-	Urban district heating systems;
essio	ete	-	Multicriteria decision-making methods.
rofe	dmc	Acquir	ed skills:
4	CC	-	To implement and use GIS tools for urban networks underground infrastructure;
		-	To collect, store, monitorize and use information in a GIS environment;
		-	To make decisions using multicriteria analysis;
		-	To propose solutions of improvement of the district heating systems.
	es	To der	nonstrate a creative and enterprising spirit in complex problem solving.
SS	enc		
Cro	pet		
	corr		
	-		

7. Discipline objectives (as results from the key competences gained)

		A comprehensive understanding of the urban underground
7 1	Conoral objective	infrastructure (water distribution systems, sewerage networks,
/.1		district heating systems) using modern tools and paradigms
		(GIS, multicriteria analysis).
		Understanding the graphical representation of building services
	Specific objectives	design layouts and schematics.
		Evaluating the results obtained by using specific CAD/GIS
		models/softwares for building services engineering domain.
		Selecting appropriate materials and technologies with respect to
7 2		the particular conditions regarding the structure and positioning
1.2		of different building services systems.
		Identifying specific technical regulations for district heating
		networks, water supply and sewerage systems.
		Adapting the calculation methods to the characteristics of
		building services systems and components: district heating
		networks, water supply and sewerage systems.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
-------------------------	--------------------	---------------------	-------

1. Overview of the course	2					
2. Urban Water Distribution Networks	2					
3. Urban Sewerage Networks	2					
4. Overview of GIS: Definitions, components	2	-				
5. GIS Applications for Urban Management and	2	-				
Development						
6. Data Analysis, Spatial Queries and Basic Spatial Analysis	2					
7. Multicriteria Decision-Making Basics	2	-				
8. Management of urban thermal networks - generalities	2	-				
9. Thermal network systems: classification, pipes,	2	-				
connecting elements, mobile and fixed supports, expansion						
compensators						
10. External structure of central heating systems	2	Interactive				
11. Hydraulic calculation of thermal networks: hydraulic	2	mothods:	Video-			
calculation of hot water networks, piezometric graph of hot		Multimodia	projector			
water networks		procentation				
12. Thermal calculation of district heating networks: heat	2	presentation				
loss calculation						
13. Calculation of temperature drop: checking the	2	2				
temperature at the outer surface of the thermal insulation,						
calculation of the optimal thickness of the thermal insulation						
layer						
14. Mechanical calculation of thermal networks: general	2	-				
considerations, calculation of pipe wall thickness, calculation						
of the distance between mobile and fixed supports,						
calculation of naturally elastic configurations.						
The case of pre-insulated pipes.						
Bibliography		<u> </u>				
1. Nyerges Timothy L., Jankowski P Regional and Urban GIS:	A Decision	Support Approac	h. New York:			
Guilford Press, 2010.						
2. Maantay J., Ziegler J GIS for the Urban Environment, ESRI	Press, Redla	ands (CA), USA, 2	006.			
3. Shamsi U.M GIS applications for water, wastewater, and s	tormwater	systems. CRC Pre	ess, Boca			
Raton (FL), USA, 2005.						
4. Grigg N.S Water, Wastewater, and Stormwater Infrastruct	ture Manag	<i>ement,</i> CRC Pres	s, Boca Raton			
(FL), USA, 2012.						
5. Ishizaka A., Nemery P Multi-criteria decision analysis: methods and software. Wiley, Chichester, UK,						
2013.						
6. Enciclopedia tehnică de instalații - Instalații de încălzire, Ediția a-II-a, Editura Artecno, București,						
2010.						
7. GP 36 Ghid pentru proiectarea automatizării instalațiilor din	7. GP 36 Ghid pentru proiectarea automatizării instalațiilor din centrale și puncte termice					
8. I 37 – 1981 Instrucțiuni tehnice pentru echilibrarea hidraulic	ă prin diafi	ragme a instalații	lor și rețelelor			
termice cu apă caldă și fierbinte						
9. NP 029 – 2002 Normativ de proiectare, execuție și exploatar	e pentru re	ețele termice cu c	onducte			
preizolate montate în sol utilizate la transportul agentului tern	preizolate montate în sol utilizate la transportul agentului termic de încălzire și a apei calde de consum					

10. MP 028 – 2003 Metodologie privind echilibrarea hidraulică a rețelelor termice cu apă caldă și apă fierbinte.

11. District heating application handbook - <u>www.districtenergy.danfoss.com</u>

12. INTERNATIONAL ENERGY AGENCY - IEA DISTRICT HEATING AND COOLING; Programme of Research,

Development and Demonstration on District Heating and Cooling

13. Handbook on Planning of District Heating Networks - www.energieschweiz.ch

8.2 Laboratory	Number	Teaching	Notos
	of hours	methods	Notes
1. QGIS Interface. Creating layers.	2		
2. Creating basic maps. Vectors. Symbology.	2		
3. Attributes. Labels. Creating vectors and vector analysis.	2		
Raster data.			
4. Database concepts. SQL. Spatial databases in QGIS.	2		
5. Calculation of water losses according to IWA methodology	n		
and water loss management programs in urban networks.	Z		
6. Analysis of urban water distribution networks using a	ſ		
hydraulic modeling program.	Z		
7. Analysis of water quality in urban networks using a	n		
hydraulic modeling program.	Z		
8. Multi-criteria analysis - methods and software.	2	Intoractivo	
9. Multi-criteria analysis - methods and software.	2	teaching	Video-
10. Applications to the hydraulic calculation of thermal	n	methods	nroiector
networks: the hydraulic calculation of hot water networks.	Z	methods	projector
11. Applications to the thermal calculation of thermal	n		
networks: calculation of heat losses.	Z		
12. Applications to the calculation of the temperature drop:			
checking the temperature at the outer surface of the	n		
thermal insulation, calculating the optimal thickness of the	Z		
thermal insulation layer.			
13. Applications to the mechanical calculation of thermal			
networks: calculation of pipe wall thickness, calculation of	n		
distance between movable and fixed supports, calculation of	Z		
naturally elastic configurations.			
14. Evaluation of practical work.	2		

Bibliography

1. QGIS Training Manual https://docs.qgis.org/2.14/en/docs/training_manual/

2. Badut, M. - *GIS : Sisteme informatice geografice : fundamente practice*, Editura Albastra, Cluj-Napoca, 2004

3. Green, D. Bossomaier, T. - *Online GIS and Spatial metadata*, Taylor and Francis, New York,London, 2000

5. Keller I.E. - GIS și modelare hidraulică pentru rețele de alimentare cu apă și canalizare,

Casa Cărții de Știință, Cluj-Napoca, 2008

6. Nyerges Timothy L., Jankowski P. - *Regional and Urban GIS: A Decision Support Approach*. New York: Guilford Press, 2010.

7. Maantay J., Ziegler J. - GIS for the Urban Environment, ESRI Press, Redlands (CA), USA, 2006.

8. Shamsi U.M. - *GIS applications for water, wastewater, and stormwater systems*. CRC Press, Boca Raton (FL), USA, 2005.

9. Ishizaka A., Nemery P. - *Multi-criteria decision analysis: methods and software*. Wiley, Chichester, UK, 2013.

10. Enciclopedia tehnică de instalații - Manualul de instalații - Instalații de încălzire, Ediția a-II-a, Editura Artecno, București, 2010.

11. GP 36 Ghid pentru proiectarea automatizării instalațiilor din centrale și puncte termice

12. NP 029 – 2002 Normativ de proiectare, execuție și exploatare pentru rețele termice cu conducte

preizolate montate în sol utilizate la transportul agentului termic de încălzire și a apei calde de consum

3. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired competences will be necessary to the employees working in the field of urban water and sewerage networks design and execution, district heating systems design and execution, and urban planning.

4. Evaluation

	10.1 Accossment criteria	10.2 Accessment methods	10.3 Weight in the			
Activity type	10.1 Assessment citteria	10.2 Assessment methods	final grade			
	Evaluation will be based					
10.4 Course	on:	Writton oxom (2 hours)	F0%			
10.4 Course	- quizzes;	written exam (2 hours)	50%			
	- questions					
	In order to be accepted to					
	the exam, students must					
10 Elaboratory	properly finalize their	Evaluation along the semester	F0%			
10.5 Laboratory	laboratory activity		5078			
	(submitting in time their					
	work and presenting it)					
10.6 Minimum standa	rd of performance					
Getting grade 5 for both theory and applications.						
Final grade is obtained from the following formula: $N = 0.5 \cdot T + 0.5 \cdot A$						
applicable only if: $T \ge 5$ and $A \ge 5$.						
Grade components: Tl	neory (T); Applications (A)					

Date of filling in:		Title Surname Name	Signature
26.06.2023	Lecturer	Assoc.Prof. PhD.Eng. Ciprian BACOŢIU (7 weeks) Assoc.Prof. PhD.Eng. Ancuţa ABRUDAN (7 weeks)	
	Teachers in charge of application	Senior Lecturer PhD.Eng. Cristina IACOB	

Date of approval in the Department of Building Services	Head of department
Engineering	Assoc.Prof.PhD.Eng. Carmen MÂRZA
29.06.2023	
Date of approval in the Council of the Faculty of Building	Dean
Services Engineering	Assoc.Prof.PhD.Eng. Florin DOMNIŢA
29.06.2023	