SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	18.00

2. Data about the subject

2.1	Subject name				Renewable Energy Sources			
2.2	Course responsible/lecturer				Lect.phd.eng. Roxana Mare – roxana.mare@insta.utcluj.ro			
2.3	Teachers in charge of seminars				Lect.phd.eng. Georgiana CORSIUC –			
2.3					georgiana.corsiuc@insta.utcluj.ro			
2.4 Y	2.4 Year of study II 2.5 Semester I			ı	2.6 Assessment		E	
2.7 Subject				•		DA		
category						DI		

3. Estimated total time

2.1 Number of hours per week	2	of which	3.2	1	3.3		3.3	1	3.3	
3.1 Number of hours per week		or writeri	Course	1	Seminar		Laboratory	1	Projec	t
3.4 Total hours in the curriculum	28	of which	3.5	14	3.6		3.6	14	3.6	
5.4 Total flours in the curriculum	20	Of WillCit	Course	14	Seminar		Laboratory	y ¹⁴ Proje		t
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography								24		
(b) Supplementary study in the library, online and in the field								7		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								14		
(d) Tutoring										-
(e) Exams and tests								2		
(f) Other activities								-		
3.8 Total hours of individual study (sum (3.7(a) 3.7(f))) 47										

3.8 Total hours of individual study (sum (3.7(a)3.7(f)))	47
3.9 Total hours per semester (3.4+3.8)	75
3.10 Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Technical drawings, electrical, thermal, and mechanical
4.2	Competence	engineering

5. Requirements (where appropriate)

5.1 For the	For the course	Microsoft Teams platform/ amphitheater, 21 December 1989
5.1	Tor the course	Blvd. Nr.128-130, Cluj-Napoca

E 2	For the applications	Microsoft Teams platform/ laboratory room, 21 December 1989
5.2	Laboratory	Blvd. Nr.128-130, Cluj-Napoca

6. Specific competences

Professional	competences	✓ ✓	Identify the types and amount of energy supply necessary in a regenerative building or city, in order to provide the most beneficial, sustainable and cost-effective energy services as regards the renewable energies. To design renewable energy plants and systems integrated in nZeB buildings and regenerative cities, that match the latest findings regarding the renewable energy sources and leads to improvement, optimisation and modernisation of the building services; all focused on energy sustainability and efficiency. Designing, analysing and choosing the best solution for building services and systems focused on renewable energy sources with the help of special data programmes and software.
Cross	competences	✓ ✓ ✓	Teamwork – the ability to synthesise and clearly define every team worker's job, ensuring an efficient exchange of information, knowledge and proofing good interpersonal and networking skills. Use of the IT&C technology. Adjustment to new technologies, personal and professional development by using specialized documents and software, and electronic resources written in an international language.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing competences in the field of renewable energy sources for nZeB buildings and regenerative cities.
7.2	Specific objectives	 ✓ Identify the renewable energy sources from the area of interest. ✓ The use of the latest technologies of the renewable energies in building services from regenerative cities after determining the energy demand of buildings and/or city. ✓ Design new building services, optimise and upgrade the existing building services and systems based on renewable energies. ✓ The integration of the building services and systems that use the renewable energies in the architecture of the nZeB buildings and regenerative cities. ✓ The use of theoretical knowledge in practice: dimensioning, analysis and choice of the optimum solution through specific software.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Overview. Renewable energy policy and statistics	1 hour	On line	Video
Solar energy – thermal plants	2 hours	or	system

Solar energy – photovoltaic systems	2 hours	Presentation
Wind energy	2 hours	and discussions
Hydropower	1 hour	
Biomass and biofuels	2 hours	
Geothermal energy	1 hour	
Hydrogen and fuel cells	1 hour	
Hybrid renewable systems for thermal and electrical	2 hours	
energies		
Total	14 hours	

Bibliography

- 1. RES LEGAL Europe Legal Sources on Renewable Energy https://www.res-legal.eu/home/
- 2. ***, Renewable Energy Policies in a Time of Transition, April 2018, IRENA
- 3. https://www.ecohz.com/facts/european-renewable-policy-framework/
- 4. ***, Renewable Energy Statistics Report, IRENA International Renewable Energy Agency, 2020
- ***, Eurostat, Renewable Energy Statistics https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics
- 6. Mârza C., Hoţupan A., Moldovan R., Corsiuc G., Surse neconvenţionale de energie (Renewable energy sources), Ed. U.T.PRESS Cluj-Napoca, 2013.
- 7. Boyle, G., Renewable Energy. Power for a Sustainable Future, Third Edition, Oxford University Press, 2012.
- 8. Shere J., Renewable., St. Martin's Press, 2013
- 9. Sorensen B., Renewable energy. Its physics, engineering, use, environmental impacts, economy and planning aspects, Third Ed., Elsevier Science, 2004.
- 10. Yergin D., The New Map. Energy, Climate, and the Clash of Nations, The Penguin Press, 2020

8.2. Laboratory	Number	Teaching	Notes
6.2. Laboratory	of hours	methods	Notes
Solar systems for heating and hot water. Domestic hot	4		
water and heating demand. Selecting and sizing			
components.		On line	
Determining electricity demand. Selecting components	4	or	
and sizing the solar-photovoltaic system.		Discussions,	
Wind power generation system.	2	case study, team work.	
Heat pumps for heating and domestic hot water supply.	2	team work.	
Evaluation	2		

Bibliography

- 1. Mârza C., Hoţupan A., Moldovan R., Corsiuc G., Surse neconvenţionale de energie (Renewable energy sources), Ed. U.T.PRESS Cluj-Napoca, 2013.
- 2. Bandoc, G., Degeratu M., Instalaţii şi echipamante pentru utilizarea energiei mecanice nepoluante,Utilizarea energiei vântului, Matrix Rom, Bucureşti, 2007.
- 3. Boyle, G., Renewable Energy. Power for a Sustainable Future, Third Edition, Oxford University Press, 2012.
- 4. Degeratu, M., Bandoc G., Instalații și echipamante pentru utilizarea energiei mecanice nepoluante- Utilizarea energiei valurilor, Matrix Rom, București, 2007.
- 5. Fanchi, J. R.: Energy: technology and directions for the future. 2004, Elsevier.

- 6. ***Gex 13-2015 Ghidul privind utilizarea surselor regenerabile de energie la cladirile noi si existente, Ed. Matrix Rom. Bucuresti, 2016.
- 7. Lucian Victor, Surse nepoluante de producere a energiei electrice, Editura AGIR, Bucureşti 2005.
- 8. Kemp, W., Renewable Energy Handbook, Aztext Press, Canada, 2009.
- 9. Popescu, M.,O, Popescu, C.,L, Surse regenerabile de energie, Vol.1: Principii şi aplicaţii, Ed. Electra, Bucuresti 2010.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences achieved by the alumni are necessary in the field of design, production, consulting and marketing. Thus, the demands of the employees are being satisfied.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Written exam	Test – 2 hours	50%
10.5 Laboratory	Verification of knowledge and abilities acquired as a result of class activities.	Oral examination	50%

10.6 Minimum standard of performance

Students must pass the Laboratory test for the final exam.

The components of the final grade are Exam (E) and Laboratory (L).

Thus, the formula for the final grade of this subject is N = 0.5xE + 0.5xL.

The 3 credits are obtained only if $N\geq 5$, where both $E\geq 5$ and $L\geq 5$.

Date of filling in: 26.06.2023		Title Surname Name	Signature
	Lecturer	Lect.phd.eng. Roxana MARE	
	Teachers in charge of application	Lect.phd.eng. Georgiana CORSIUC	

Date of approval in the Department of Building Services	Head of department
Engineering	Assoc.Prof.PhD.Eng. Carmen MÂRZA
29.06.2023	
Date of approval in the Council of the Faculty of Building Services	Dean
Engineering	Assoc.Prof.PhD.Eng. Florin DOMNIŢA
29.06.2023	