SYLLABUS

1. Data about the program of study

4.4	to attract to a	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	16.00

2. Data about the subject

2.1	Subject name				Energy Management Tools and Programs for Regenerative		
2.1					Cities		
2.2	.2 Course responsible/lecturer				Prof. Dr. Eng. Math. Dan D. MICU		
2.3	Teachers in charge of seminars				Lecturer Dr. Eng. Andrei CECLAN		
2.4 \	ear of study	Ш	2.5 Semester	Ι	2.6 Assessment	С	
2.7 9	2.7 Subject			DS			
category			DI				

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2 Course	1	3.3 Seminar	-	3.3 Laboratory	-	3.3 Project	1
3.4 Total hours in the curriculum		of which	3.5 Course	14	3.6 Seminar	-	3.6 Laboratory	-	3.6 Project	14
3.7 Individual study:										
(a) Manual, lecture materia	l and	notes, bib	liograph	ıy					1	0
(b) Supplementary study in	the li	brary, onl	ine and i	in th	e field				1	0
(c) Preparation for seminar	s/labo	oratory wo	orks, hor	new	ork, repor	ts, po	ortfolios, essa	ays	1	8
(d) Tutoring										6
(e) Exams and tests	(e) Exams and tests							3		
(f) Other activities						-				
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 47										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge related to energy, electrotechnics, thermo-				
		technics, buildings and renewable energy sources.				
4.2	Competence	Electrical, gas, thermal, water and water sewage installations.				

5. Requirements (where appropriate)

5.1 For the course	Classroom equipped with blackboard and Video Projector - 21	
5.1	For the course	December 1989 Blvd., no. 128-130

5.2	For the applications project	Classroom equipped with blackboard and Video Projector - 21		
5.2	For the applications project	December 1989 Blvd., no. 128-130		

6. Specific competences

Professional	competences	The ability to use specific energy analytics instrumentation and to manage on both energy use and generation at buildings level and local regenerative communities level, on different energy users and energy carriers. The ability to elaborate energy efficiency action plans and programs, energy management actions to be put in practice at buildings, utilities infrastructure and local communities level.
Cross	competences	The ability to have an enhanced understanding of the energy impact on the local public utility services, buildings and their interaction in the regenerative cities. The ability to identify and foster opportunities and detail energy efficiency and energy management solutions.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Evidenced based knowledge transfer and case study-based experiences regarding the energy management in both (non) regenerative cities, to empower the participants to act as local Energy Managers.
7.2	Specific objectives	Integrative knowledge of the local energy generation and use in the regenerative cities. Knowledge of the legislation and authorities involved in the energy management in local communities. The ability to effectively use energy management tools and implement energy efficiency solutions. Financing, energy performance contracting and ESCO mechanisms.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Course 1 Introduction 1. The actual local energy context of the cities 1.1. Built environment – energy use 1.2. Local counties capitals – energy use 1.3. The other cities – energy use 1.4. Villages and counties – energy use 1.5. Public utility infrastructure companies 1.6. Mobility and the energy impact 1.7. Waste collection and energy valorization 1.8. Street lighting – energy impacts 1.9. Services and industrial sites – energy use 1.10. Energy impact in the local budgets	2	Debates on available for the students materials and contents. Sessions of questions and answers. Case studies presentations. Use of online interactive	
Course 2	2	instruments –	

	1		1
2. Opportunities, responsibility, collaboration, vision		mentimeter –	
2.1. Energy cooperation and energy islands		use of power	
2.2. Paradigm shift in the public utility companies – energy,		point	
water and transportation			
2.3. Financing schemes and how to access them on energy		presentations	
projects		and board	
2.4. Support and regulation authorities – paradigm shift:		writing	
ANRE, ANRSC, Ministry of Development, State Construction		Practical	
Inspectorate, Sustainable Development Department -			
Romanian government, Ministry of Economy, Energy and		examples of	
Business Environment		energy	
2.5. The energy audit and the effective implementation of		analytics tools.	
the proposed action plan			
2.6. The local energy manager role			
2.7. The ISO 50001 Energy Management system			
2.8. Measurement and verification tools and protocol			
3. Legal frame			
3.1. European and national legislation regarding energy			
3.2. Strategies, action plans and energy programs			
3.3. Design themes and procurement documentation			
3.4. Energy performance contracting			
3.5. Public-private partnership		-	
Course 3			
4. Instruction, education and behavioral change			
4.1. Guide for the local decision maker in the cities			
4.2. Professional uplift of the administrative staff			
4.3. Campaigns for instruction, education and behavioral			
change			
4.4. Updates for the professionals	2		
4.5. Maintenance and exploitation			
5. Energy poverty approach			
5.1. Energy poverty at the users level			
5.2. Energy poverty at the generation and district heating			
level			
5.3. Proposed action plan			
Course 4			
6. Technologies for energy efficiency and distributed			
generation			
6.1. Reduce the energy need first			
6.2. Energy efficiency of the processes	2		
6.3. Local distributed generation			
6.4. Energy management in both generation and use			
6.5. Buildings deep renovation			
6.6. Preparation and launch of energy efficiency projects			
Course 5		1	
7. Added value through research, innovation and			
dissemination			
	2		
7.1. Energy infrastructure development	2		
7.2. High energy performance and increased interactive buildings			
		1	
-			
7.3. Digital distributed energy services			
-	2	-	

8.1. Budgets, budgeting and cost-analysis applied in energy	
efficiency	
8.2. Free money financing schemes in energy efficiency	
projects	
8.3. ESCO investments	
8.4. Energy efficiency funds and loans	
8.5. Energy coaching in local communities	
8.6. Marketing and sale of energy efficiency	
Course 7	
9. Transforming through energy the local communities	
9.1. Proposed vision and challenges	
9.2. Sustainable local communities	2
9.3. Multiple core cities and rapid mobility	2
9.4. Energy cooperation and energy islands – revisited	
9.5. Intelligent and high indoor comfort buildings	
9.6. Local energy policies and programs	

Bibliography

• Guide to Energy Management, Eighth Edition 8th Edition, Barney L. Capehart, Wayne C. Turner, William J. Kennedy, The Fairmont Press, USA, 2016.

• Energy Management Handbook, Wayne C. Turner and Steve Doty (Editors), The Fairmont Press, USA 2006.

• Total Energy Management Handbook, Kazuhiko Yoshida (Editor), Energy Conservation Center Japan, 2005.

• Energy Management in Buildings, Keith Moss, Taylor & Francis, 2006.

• Building Energy Management Systems, Geoff Levermore, Taylor and Francis 2000.

• Managing Indoor Environments and Energy in Buildings with Integrated, Triantafyllia Nikolaou, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou, Corneliu Munteanu, Springer, 2015.

Managementul energiei electrice. Aplicații, Andrei C. Cziker, Mircea Chindriș, Casa Cărții de Știință, Cluj-Napoca, 2004.

8.2. Project	Number of hours	Teaching methods	Notes
Project meeting 1 List of proposed project titles and collection of student proposals Definition of the design themes Local communities energy balance calculation Status on the project preparation.	2	Debates on available for the students materials and contents. Sessions of	
Project meeting 2 Apply monitoring and targeting (M&T) tools Status on the project preparation.	2	questions and answers. Case studies	
Project meeting 3 Apply energy analytics tools Status on the project preparation.	2	presentations. Use of online interactive	
Project meeting 4 Apply measurement and verification (M&V) tools for energy savings Status on the project preparation.	2	instruments – mentimeter – use of power point	
Project meeting 5 Elaboration of an energy efficiency program Status on the project preparation.	2	presentations and board writing	

Project meeting 6 Preparation and implementation of an energy management plan Status on the project preparation.		Practical examples of energy	
Project meeting 7 Results integration in the project, using all the previous tools and programs Status on the project preparation.	2	analytics tools.	

Bibliography

• Guide to Energy Management, Eighth Edition 8th Edition, Barney L. Capehart, Wayne C. Turner, William J. Kennedy, The Fairmont Press, USA, 2016.

• Energy Management Handbook, Wayne C. Turner and Steve Doty (Editors), The Fairmont Press, USA 2006.

• Total Energy Management Handbook, Kazuhiko Yoshida (Editor), Energy Conservation Center Japan, 2005.

- Energy Management in Buildings, Keith Moss, Taylor & Francis, 2006.
- Building Energy Management Systems, Geoff Levermore, Taylor and Francis 2000.

• Managing Indoor Environments and Energy in Buildings with Integrated, Triantafyllia Nikolaou, Dionysia Kolokotsa, George Stavrakakis, Apostolos Apostolou, Corneliu Munteanu, Springer, 2015. Managementul energiei electrice. Aplicații, Andrei C. Cziker, Mircea Chindriş, Casa Cărții de Știință, Cluj-

Napoca, 2004.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The preparation and periodical update of the course will consider the existent curricula at international level, the consultation of relevant professional associations and authorities, the legal frame evolution and national and international implemented projects in energy, energy efficiency and energy management in local communities.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Oral and written evaluation	Individual interviews and quiz	40%
10.5 Project	Project evaluation	Team presentation of the achieved projects	60%
10.6 Minimum standa	rd of performance		
Participation at the co	ourses – minimum 80% of the	available time and full presence in	the project
meeting as conditions	to enter to the exam.		
Evaluation grade (G);	Course (C); Project (P); Calcula	ation formula of the grade G = 0.4 >	× C + 0.6 × P
Condition for obtainin	g credits: G > 5.0; where C > 5	5.0, P > 5.0.	

Date of filling in:		Title Surname Name		Signature	
17.06.2024	Lecturer	Prof. Dr. Eng. Math. Dan D. MICU			
	Teachers in charge of application	Lecturer Dr. Eng. Andrei CECLAN			
Date of approval in the Department of Building Services Engineering		Head of department Assoc.Prof.PhD.Eng. Ciprian BACOŢIU			
27.06.2024					
Date of approval in the Council of the Faculty of Building Services Engineering		Dean Assoc.Prof.PhD.Eng. Florin DOMNIȚA			
27.06.2024					