SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	5.00

2. Data about the subject

2.1	Subject name			nZEB Build	ZEB Buildings			
				Prof.PhD.E	Prof.PhD.Eng. Moga Ligia Mihaela: ligia.moga@ccm.utcluj.ro			
2.2	2.2 Course responsible/lecturer		Assoc.Prof	Assoc.Prof.PhD.Eng.Ancuţa Coca Abrudan:				
				ancuta.abr	ancuta.abrudan@insta.utcluj.ro			
2.3	Teachers in charge of			Prof.PhD.Eng.Moga Ligia: ligia.moga@ccm.utcluj.ro				
2.5	seminars			Assoc.Prof.PhD.Eng.Ancuţa Abrudan: ancuta.abrudan@insta.utcluj				nsta.utcluj.ro
2.4	2.4 Year of study I 2.5 Se			mester	1	2.6 Assessment	Exam	
2.7 Subject category Formative cat			tegory			<u>.</u>	DA	
2.73	subject category	Option	al					DI

3. Estimated total time

2.4 Number of bours many work	_	ماه : ماه : ماه	3.2	1	3.3		3.3		3.3	1
3.1 Number of hours per week	2	of which	Course	1	Seminar		Laboratory		Project	1
3.4 Total hours in the curriculum	28	of which	3.5	14	3.6		3.6		3.6	14
5.4 Total flours in the curriculum	20	or writeri	Course	14	Seminar		Laboratory		Project	14
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography						1	.0.			
(b) Supplementary study in the library, online and in the field						1	.0			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						1	.0			
(d) Tutoring						-	7			
(e) Exams and tests						4	4			
(f) Other activities						(6			
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 47										

4. Pre-requisites (where appropriate)

3.9 Total hours per semester (3.4+3.8)

3.10 Number of credit points

11	Curriculum	Knowledge regarding building and HVAC design, Thermotechnics		
4.1 Curriculum		of Constructions, construction materials, bachelor's degree		
4.2	Competence	Thermotechnics and HVAC calculation		

75

5. Requirements (where appropriate)

5.1	For the course	Class attendance is not mandatory, but it will be a plus for the final grade. Photography and filming are prohibited during the course
5.2	For the applications Project	Class attendance is mandatory. Photography and filming are prohibited during tutorials.

6. Specific competences

		-
Professional	competences	Knowledge regarding energy performance of buildings legislation. Knowledge regarding general criteria for nZEB design. Knowledge for the identification of constructive details for building envelope components Knowledge regarding thermal performance design Knowledge regarding different parts constituting HVAC systems for energy efficient buildings; Knowledge for the identification of building services components
Cross	competences	The accumulated knowledge can be used for developing technical reports for the thermal design of nZEBs. The students will be able to get the required technical knowledge to communicate with other stakeholders in the field of nZEBs. The students will be able to demonstrate a creative and enterprising spirit in solving complex problems

7. Discipline objectives (as results from the key competences gained)

7.1	Consumble his still	Developing skills for designing high nearly Zero Energy Buildings
		Synthesizing, explaining and transmitting information for nearly
		Zero Energy Buildings
		Acquiring knowledge regarding legislation and design norms
		nZEBs
		Skills development in designing nZEBs
7.2	Specific objectives	To know in detail the role of building services components and
		systems in designing nZEBs.
		Using the latest scientific and technical achievements (national
		and international) trends for developing design nZEBs

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
Overview, objectives, history. Energy efficiency at	2		
buildings. Legislation and norms regarding thermal performance of new buildings and thermal			
rehabilitation process at existing buildings			
2. nZEBs definition. Principles and design criteria.	2	Exposure,	Video-
3. Constructive solutions for nZEBs. Types of energy	2	applications	projector
efficient windows.			
4. Evaluation methodologies for the energy performance	2		
of a building and building services.			

5. Use of cogeneration for nZEBs	2	
6. Use of renewable energy for buildings: wind power and	2	
geothermal energy		
7. Use of renewable energy for buildings: solar energy and	2	
heat pumps		

Bibliography

- 1. Horia-A. Andreica, Munteanu C., Moga L. Et al, Construcții Civile, UTPRESS, 2009
- 2. Moga L., Optimizarea termoenergetică a elementelor vitrate, U.T.Press, 2013, ISBN 978-973-662-793- α
- 3. Popescu Razvan, Stefan: Utilizarea energiei regenerabile in cladiri, Editura MATRIX ROM, 2019, ISBN: 978-606-25-0290-4
- 4. Manualul de Instalatii Instalatii de incalzire, Editura MATRIX ROM, 2010
- 5. *** Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings
- 6. *** Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency.
- 7. Hendriks L.; Hens H. Building Envelopes in a Holistic Perspective, ISBN-10-9075741057, 2010.
- 8. *** http://www.passivhaus.de/
- 9. *** www.usgbc.org/leed
- 10. *** http://www.breeam.com/
- 11. *** http://isb.pub.ro/docs/Energii_regenerabile.pdf/
- 12 *** https://www.mlpda.ro/userfiles/metodologie_calcul_performanta_energetica_iulie2014.pdf

	•		
8.2. Project	Number	Teaching	Notes
3.2. 1 Toject	of hours	methods	Notes
1. Presentation of the project theme. Identification of	2		
required building layouts.			
2. Identification of building's envelope components.	2		Standards
Constructive detailing design specific for nZEBs.			and Norms,
3. Evaluation of the thermal performance of the building	2]	AutoCad,
envelope components		Exposure,	AllPlan,
4.Evaluation of the global insulation coefficient of the	1	applications	MathCad,
building envelope.			energy modelling
5. Presentation of the project theme. Description of all	3	1	and design
possible renewable energy types to be used in nZEBs.			tools
6. Calculation method using heat pumps	2	1	
7. Calculation method using wind power	2		

Bibliography

- 1. Moga Ligia, Moga Ioan Punţi termice specifice clădirilor cu pereţi structurali din zidărie, Ed. U.T. Press, Cluj-Napoca, 2013, pp. 138, ISBN 978-973-662-799-6.
- 2. Moga Ligia, Moga Ioan, "Punţi termice specifice planşeelor terasă, de pod, deasupra subsolului şi plăcilor pe sol la clădiri cu pereţi din zidărie", Ed. U.T. Press, Cluj-Napoca, 2017, pp. 164, ISBN 978-606-737-245-8.
- 3. Moga L., Rusu A., Performanța termică a clădirilor din panouri mari prefabricate: îndrumător de calcul, U.T.Press, 2013
- 4. *** Thermotechnics design norms C107/0...7-2005
- 5. Manualul de Instalatii Instalatii de incalzire, Editura MATRIX ROM, 2010

Software:

- 1. AutoCAD, Student Version
- 2. Allplan Inginerie, Student Version
- 3. Mathcad

Specialized software for the calculation of the equipment specified in the theme

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The gained knowledge will be necessary for employees that will work in building design field and building services systems. This satisfies employers' requirements.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	20 theoretic questions	Written test of 2.0 h - on-site or 30 min online	30%
10.5 Project	Evaluation of written part, calculations and drawings	Project presentation for 40 min	70%

10.6 Minimum standard of performance

Exam grade E≥5; Project/paper grade A≥5

E=[0.3(T)+0.7(P)]

The final grade will take into consideration the student's involvement during the semester

Date of filling in:		Title Surname Name	Signature
16.06.2025	1	Prof.PhD.Eng. Moga Ligia Mihaela	
	Lecturer	Assoc.Prof.PhD.Eng. Ancuţa Abrudan	
	Teachers in	Prof.PhD.Eng. Moga Ligia Mihaela	
	charge of application	Assoc.Prof.PhD.Eng.Ancuţa Abrudan	

Date of approval in the Department of Building Services

Engineering

Head of department

Assoc.Prof.PhD.Eng. Ciprian BACOŢIU

19.06.2025

Date of approval in the Council of the Faculty of Building

Services Engineering

Dean

Assoc.Prof.PhD.Eng. Florin DOMNIŢA

19.06.2025