SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	9.00

2. Data about the subject

2.1	Subject name				Indoor environmental quality and well-being		
2.2	Course responsible/lecturer				Assoc.prof.PhD.Eng. Tania RUS - tania.rus@insta.utcluj.ro		
2.3	Teachers in charge of seminars				Assoc.prof.PhD.Eng. Tania RUS - tania.rus@insta.utcluj.ro		
2.4	2.4 Year of study 1 2.5 Semester 2			2	2.6 Assessment	Exam	
2.7 9	2.7 Subject Formative category						DS
category Optional						DI	

3. Estimated total time

3.1 Number of hours per week	3	of which	3.2	2	3.3	3.3	1	3.3	
	0		Course	_	Seminar	Laboratory		Project	
2.4 Total bours in the curriculum	12	ofwhich	3.5	20	3.6	3.6	11	3.6	
5.4 Total hours in the curriculum	42	or which	Course	20	Seminar	Laboratory	14	Project	
3.7 Individual study:									
(a) Manual, lecture materia	al and	notes, bib	liograph	iy				2	1
(b) Supplementary study in the library, online and in the field					1	.5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					1	4			
(d) Tutoring								(6
(e) Exams and tests									2
(f) Other activities									
3.8 Total hours of individual stud	I hours in the curriculum 42 of which Course 28 Seminar Laboratory 14 Project idual study:								
3.9 Total hours per semester (3.4	+3.8)				100				
3.10 Number of credit points					4				

4. Pre-requisites (where appropriate)

4.1	Curriculum	Bachelor's degree
4.2	Compostorios	Principles of heating installations; Principles of ventilation and air
4.2	Competence	conditioning installations; Principles of lighting installations.

5. Requirements (where appropriate)

5.1	For the course	Classroom equipped with Video Projector - 21 December 1989 Blvd., no. 128-130
5.2	For the applications	Laboratory room - 21 December 1989 Blvd., no. 128-130

6. Specific competences

	•		
		Theor	etical knowledge:
		-	Specific notions of heating installations;
		-	Specific notions of ventilation and air conditioning installations;
		-	Specific notions of lighting installations.
	S	Acquir	red skills:
bnal	nce:	-	To evaluate the quality of the indoor environment depending on the destination of the
ssic	ete		building and the typology of the occupants;
Professiona	competences	-	To evaluate the thermal comfort of a building;
٩	U U	-	To evaluate the quality of the indoor air of a building;
		-	To evaluate the quality of lighting.
		Skills a	acquired:
		-	To use equipment and tools for monitoring the quality of the indoor environment;
		-	To propose solutions of improvement of the indoor environment quality.
	SS	To der	nonstrate a creative and enterprising spirit in complex problem solving.
S	mpetences	Use of	references in a foreign language, for professional and personal development, through
Cross	pete	contin	uous formation and efficient adaptation to new technical specifications.
	oml		
	õ		

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objectiveDevelopment of skills in the field of indoor environment of evaluation of a building and to propose solutions of impro with an emphasis on the needs of the occupants.		
7.2	Specific objectives	To establish the parameters and calculation assumptions of imposed requirements; To identify the technical non-conformities and the needs of functional and energetic rehabilitation / modernization; To use the basic concepts and engineering calculation methods to solve the practical problems imposed using installations in constructions; To use methods and programs to transmit information.	

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Introduction in indoor environmental quality (IEQ)	2	Video-Projector	
2. Standards for IEQ evaluation	2	Teaching style	
3. Indoor air quality – indoor ventilation		based on the	
4. Indoor air quality – contaminants		interactive	
5. Indoor air quality – occupant satisfaction		teacher-student	
6. Objective assessment of the thermal comfort	2	partnership;	
7. Subjective assessment of the thermal comfort	2	Presentation of	
8. Occupant responses to thermal comfort/discomfort	2	case studies.	

9. Interaction between outdoor climate and thermal comfort	2
10. Visual environment – natural/artificial lighting	2
11. Acoustic environment	2
12. Biophilia	2
13. Well-being and human values	2
14. Regenerative objectives for IEQ	2

Bibliography

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), (2013).
ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy. Atlanta;
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), (2016).

ANSI/ASHRAE Standard 62-1. Ventilation for Acceptable Indoor Air Quality. Atlanta;

3. CEN, (2019). UNI EN 16798-1: Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels, European Committee for Standardization;

4. World Health Organization – Air quality guidelines for Europe, 2000;

5. CEN, (2004). UNI EN 12464-1: Light and lighting. Lighting of workplaces. Part 1: Indoor workplaces. Brussels, European Committee for Standardization.

6. U.S. Environmental Protection Agency (1990). (EPA) (b), Facts About Formaldehyde [Online]. Retrieved from <u>https://www.epa.gov/formaldehyde/facts-about-formaldehyde#whatisformaldehyde</u>

7. U.S. Environmental Protection Agency. (1990). (EPA) Particulate Matter (PM) Basics. Retrieved from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

8. U.S. Environmental Protection Agency. (1990). (EPA) (d), Indoor Particulate Matter. Retrieved from <u>https://www.epa.gov/indoor-air-quality-iaq/indoor-particulate-matter</u>

9. U.S. National Institute for Occupational Safety and Health. (2018). (NIOSH), Pocket Guide to Chemical Hazards. Retrieved from <u>https://www.cdc.gov/niosh/npg/default.html</u>

10. U.S. Occupational Safety and Health Administration (OSHA) (2020), Code of Federal Regulations. Retrieved from <u>https://www.graphicproducts.com/articles/osha-29-cfr-1910/</u>

11. Naboni, E., & Havinga, L. C. (2019). Regenerative Design in Digital Practice: A Handbook for the Built Environment. EURAC Research. Retrieved from https://www.buildup.eu/en/practices/publications/ regenerative-design-digital-practice-handbook-built-environment

8.2. Laboratory	Number of hours	Teaching methods	Notes
1. Assessment of the hygro-thermal environment –	2		
temperature, humidity and air velocity			
2. Indoor air-quality: measurements of the chemical and		Teaching style	
natural contaminants		based on the	
3. Objective and subjective assessment of the thermal comfort	2	interactive teacher-student	
4. Evaluation of the visual environment	2	partnership;	
5. Evaluation of the acoustic environment	2	partnersnip,	
6. Assessment of the indoor environmental quality	2		
7. Recovery of laboratory	2		
	•	•	

Bibliography

 American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), (2013). ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy. Atlanta;
CEN, (2005). EN ISO 7730: Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort

criteria. Brussels, European Committee for Standardization;

3. CEN, (2019). UNI EN 16798-1: Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Brussels, European Committee for Standardization;

4. World Health Organization (WHO) (2000). Air Quality Guidelines for Europe. Second Edition

5. World Health Organization – Air quality guidelines for Europe, 2000;

6. International Well Building Institute (IWBI), (2019). The Well Building Standard

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competencies will be necessary for the employees who carry out their activity in design, execution and maintenance.

10. Evaluation

	10.1 Account oritoria	10.2 Assessment	10.3 Weight in the	
Activity type	10.1 Assessment criteria	methods	final grade	
10.4 Course	The exam consists in verifying the theoretical	Quiz	75%	
	and practical knowledge acquired			
	Completion and submission of laboratory	Submission of		
10.5 Laboratory	papers conditions the entrance to the exam.	laboratory	25%	
	papers conditions the entrance to the exam.	papers		
10.6 Minimum st	andard of performance			
Participation in th	Participation in the laboratory conditions the entrance to the exam.			
Exam grade components (E); Laboratory (L); Calculation formula of the grade G = 0.75 × E + 0.25 × L				
Condition for obt	aining credits: G> 5.0; where E> 5.0, L> 5.0			

Date of filling in:		Title Surname Name		Signature
June 2025	Lecturer	Assoc.prof.PhD.Eng. Tan		
	Teachers in charge of application	Assoc.prof.PhD.Eng. Tan		
Date of approval in the Department of Buil Engineering 19.06.2025		uilding Services	Head of department Assoc.Prof.PhD.Eng. Cipria	an BACOŢIU
Date of approval in Engineering	the Council of the Fac	culty of Building Services	Dean Assoc.Prof.PhD.Eng. Florin	DOMNIŢA
19.06.2025				