SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca		
1.2	Faculty	Faculty of Building Services Engineering		
1.3	Department	Building Services Engineering		
1.4	Field of study	Civil Engineering and Building Services		
1.5	Cycle of study	Master		
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer		
1.7	Form of education	Full time		
1.8	Subject code	18.00		

2. Data about the subject

2.1	Subject name				Renewable Energy Sources			
2.2	Course responsible/lecturer				Lect.phd.eng. Georgiana CORSIUC –			
2.2	course respon	ISIDIC	lecturer		georgiana.corsiuc@insta.utcluj.ro			
2.3	Teachers in charge of seminars				Lect.phd.eng. Georgiana CORSIUC –			
2.5					georgiana.corsiuc@insta.utcluj.ro			
2.4 ۱	/ear of study	2.5 Semester	Ι	2.6 Assessment		E		
2.7 9	2.7 Subject						DA	
category							DO	

3. Estimated total time

3.1 Number of hours per week		of which	3.2	1	3.3		3.3	1	3.3	
			Course		Seminar		Laboratory		Project	
3.4 Total hours in the curriculum	28	of which	3.5	14	3.6		3.6	14	3.6	
	20	or which	Course		Seminar		Laboratory	14	Project	
3.7 Individual study:										
(a) Manual, lecture materia	al and	notes, bib	liograph	ıy					2	24
(b) Supplementary study in the library, online and in the field								7		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	4		
(d) Tutoring										-
(e) Exams and tests										2
(f) Other activities								-		
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 47										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Technical drawings, electrical, thermal, and mechanical engineering

5. Requirements (where appropriate)

	5.1	For the course	Amphitheatre, B-dul 21 Decembrie Nr.128-130, Cluj-Napoca
--	-----	----------------	--

	5.2	For the applications Laboratory	Laboratory room, B-dul 21 Decembrie Nr.128-130, Cluj-Napoca
--	-----	------------------------------------	---

6. Specific competences

		~	Identify the types and amount of energy supply necessary in a regenerative building or city, in
			order to provide the most beneficial, sustainable and cost-effective energy services as regards
			the renewable energies.
la	ses	\checkmark	To design renewable energy plants and systems integrated in nZeB buildings and regenerative
Professional	tenc		cities, that match the latest findings regarding the renewable energy sources and leads to
	hpel		improvement, optimisation and modernisation of the building services; all focused on energy
Pro	con		sustainability and efficiency.
		\checkmark	Designing, analysing and choosing the best solution for building services and systems focused
			on renewable energy sources with the help of special data programmes and software.

		✓	Teamwork – the ability to synthetise and clearly define every team worker's job, ensuring an
	ces		efficient exchange of information, knowledge and proofing good interpersonal and
SS	petences		networking skills.
Cross	Ipel	\checkmark	Use of the IT&C technology.
	E	./	Adjustment to new technologies, nercenel and prefessional development by using specialized

Adjustment to new technologies, personal and professional development by using specialized documents and software, and electronic resources written in an international language.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing competences in the field of renewable energy sources for nZeB buildings and regenerative cities.					
7.2	Specific objectives	 ✓ Identify the renewable energy sources from the area of interest. ✓ The use of the latest technologies of the renewable energies in building services from regenerative cities after determining the energy demand of buildings and/or city. ✓ Design new building services, optimise and upgrade the existing building services and systems based on renewable energies. ✓ The integration of the building services and systems that use the renewable energies in the architecture of the nZeB buildings and regenerative cities. ✓ The use of theoretical knowledge in practice: dimensioning, analysis and choice of the optimum solution through specific software. 					

8. Contents

8.1. Lecture (syllabus)	Number	Teaching	Notes	
	of hours	methods		
Overview. Renewable energy policy and statistics	1 hour	Presentation	Video	
Solar energy – thermal plants	2 hours	and discussions	system	
Solar energy – photovoltaic systems	2 hours		System	

Wind energy	2 hours
Hydropower	1 hour
Biomass and biofuels	2 hours
Geothermal energy	1 hour
Hydrogen and fuel cells	1 hour
Hybrid renewable systems for thermal and electrical	2 hours
energies	
Total	14 hours

Bibliography

- 1. RES LEGAL Europe Legal Sources on Renewable Energy https://www.res-legal.eu/home/
- 2. ***, Renewable Energy Policies in a Time of Transition, April 2018, IRENA
- 3. https://www.ecohz.com/facts/european-renewable-policy-framework/
- 4. ***, Renewable Energy Statistics Report, IRENA International Renewable Energy Agency, 2020
- 5. ***, Eurostat, Renewable Energy Statistics https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics
- 6. Boyle, G., Renewable Energy. Power for a Sustainable Future, Third Edition, Oxford University Press, 2012.
- 7. Shere J., Renewable., St. Martin's Press, 2013
- 8. Sorensen B., Renewable energy. Its physics, engineering, use, environmental impacts, economy and planning aspects, Third Ed., Elsevier Science, 2004.
- 9. Yergin D., The New Map. Energy, Climate, and the Clash of Nations, The Penguin Press, 2020

8.2. Laboratory	Number	Teaching	Notes	
	of hours	methods	NULES	
Solar systems for heating and hot water. Domestic hot	4			
water and heating demand. Selecting and sizing				
components.		Discussions		
Determining electricity demand. Selecting components	4	Discussions,		
and sizing the solar-photovoltaic system.		case study, team work.		
Wind power generation system.	2	team work.		
Heat pumps for heating and domestic hot water supply.	2]		
Evaluation	2]		

Bibliography

- 1. Mârza C., Hoțupan A., Moldovan R., Corsiuc G., Surse neconvenționale de energie (Renewable energy sources), Ed. U.T.PRESS Cluj-Napoca, 2013.
- 2. Bandoc, G., Degeratu M., Instalații și echipamante pentru utilizarea energiei mecanice nepoluante, Utilizarea energiei vântului, Matrix Rom, București, 2007.
- 3. Boyle, G., Renewable Energy. Power for a Sustainable Future, Third Edition, Oxford University Press, 2012.
- 4. Degeratu, M., Bandoc G., Instalații și echipamante pentru utilizarea energiei mecanice nepoluante- Utilizarea energiei valurilor, Matrix Rom, București, 2007.
- 5. Fanchi, J. R.: Energy: technology and directions for the future. 2004, Elsevier.
- 6. ***Gex 13-2015 Ghidul privind utilizarea surselor regenerabile de energie la cladirile noi si existente, Ed. Matrix Rom. Bucuresti, 2016.
- 7. Lucian Victor, Surse nepoluante de producere a energiei electrice, Editura AGIR, Bucureşti 2005.
- 8. Kemp, W., Renewable Energy Handbook, Aztext Press, Canada, 2009.

9. Popescu, M.,O, Popescu, C.,L, Surse regenerabile de energie, Vol.1: Principii și aplicații, Ed. Electra, Bucuresti 2010.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences achieved by the alumni are necessary in the field of design, production, consulting and marketing. Thus, the demands of the employees are satisfied.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
			final grade		
10.4 Course	Written exam	Test – 2 hours	50%		
	Verification of knowledge				
10.5 Laboratory	and abilities acquired as a	Oral examination	50%		
	result of class activities.				
10.6 Minimum standard of performance					
Students must pass the Laboratory test for the final exam.					
The components of the final grade are Exam (E) and Laboratory (L).					
Thus, the formula for the final grade of this subject is N = 0.5xE + 0.5xL.					
The 3 credits are obtained only if N \geq 5, where both E \geq 5 and L \geq 5.					

Date of filling in:		Title Surname Name	Signature
14.06.2025	Lecturer	Lect.phd.eng. Georgiana CORSIUC	
	Teachers in charge of application	Lect.phd.eng. Georgiana CORSIUC	

Date of approval in the Department of Building Services	Head of department Assoc.Prof.PhD.Eng. Ciprian BACOŢIU
19.06.2025	
Date of approval in the Faculty of Building Services Engineering 19.06.2025	Dean Assoc.Prof.PhD.Eng. Florin DOMNIȚA