SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Building Services Engineering
1.3	Department	Building Services Engineering
1.4	Field of study	Civil Engineering and Building Services
1.5	Cycle of study	Master
1.6	Program of study/Qualification	Building Services for Regenerative Cities / MS Engineer
1.7	Form of education	Full time
1.8	Subject code	19.20

2. Data about the subject

2.1	Subject name				Control Systems for Smart Homes and Cities		
2.2	Course responsible/lecturer				Assoc. Prof. PhD Eng. Calin Ciugudeanu,		
2.2	2.3 ITeachers in charge of seminars				Assoc. Prof. PhD Eng. Calin Ciugudeanu,		
2.5					Calin.ciugudeanu@insta.utcluj.ro		
2.4 ۱	2.4 Year of study II 2.5 Semester 1			1	2.6 Assessment	Colloquy	
2.8 9	2.8 Subject Formative category						DA
cate	category Optional						DO

3. Estimated total time

3.1 Number of hours per week	2	of which	3.2	1	3.3		3.3	1	3.3	
S.1 Number of hours per week	Z	or which	Course	Ŧ	Seminar		Laboratory	1	Proje	t
3.4 Total hours in the curriculum	28	of which	3.5	14	3.6		3.6	14	3.6	
5.4 Total hours in the curriculum	20	or which	Course	14	Seminar		Laboratory	14	Proje	t
3.7 Individual study:										
(a) Manual, lecture material and notes, bibliography							15			
(b) Supplementary study in the library, online and in the field							15			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							12			
(d) Tutoring								2		
(e) Exams and tests										3
(f) Other activities										
3.8 Total hours of individual study (sum (3.7(a)3.7(f))) 47										
3.9 Total hours per semester (3.4+3.8) 75										
3.10 Number of credit points 3										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Physics and Electrotechnical elements
4.2	Competence	Electronic engineering, Use of computer (MS-Office; Autocad)

5. Requirements (where appropriate)

5 1	5.1 For the course	Classroom equipped with Video Projector - 21 December 1989
5.1	For the course	Blvd., no. 205.

5.2	For the laboratory	Classroom equipped with Video Projector - 21 December 1989
5.2	FOI THE IMPORTORY	Blvd., no. 108, 109.

6. Specific competences

		Smart	home control systems:
		•	, identify the market available control systems solutions.
_	S	•	propose the most appropriate control gears
ona	nce	•	calculate a control system IRR internal rate of return
essi	ete	After g	raduating this subject, students will be able to:
Professional	competences	•	comparing different control system diagrams for smart houses
	8	•	to analyze and propose the best technical and economical control system solutions for
			smart homes
		•	to make an SRI - Smart Readiness Indicator assessment for a building
	S	1. Use	of efficient and responsible work strategies, on-time, honest and personal engagement,
S	competences	based	on principles, norms, and ethical professional values.
Cross	ete	2. Knov	wledge of team efficient work, on different hierarchy stages.
Ō	du	3. Use	of references in a foreign language, for professional and personal development, through
	CO	contin	uous formation and efficient adaptation to new technical specifications.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Acquiring competences in smart control systems
7.2	Specific objectives	 Overview of energy control systems in various infrastructures like street lighting or built environments Knowledge of EU Directive 2018/844 of the Energy Performance of Buildings, Directive (2010/31/EU) - measures to establish an optional scheme for rating the smart readiness of buildings. Finding the optimal control systems for smart homes and cities The course also includes a project in which students must study
		an energy system of their own interest, from a systems and controls perspective.

8. Contents

8.1. Lecture (syllabus)	Number of hours	Teaching methods	Notes
1. Introduction: Concept and classification of control system	2	Video-Projector	
2. Conventional Control Systems and Home Automation Control Systems	2	Teaching style based on the	
3. Smart Control Centre	2	interactive teacher- student	
4. Home Security Control Systems	2	partnership;	
5. Smart lighting Management	2	Presentation of case	
6. Room Climate Control Systems	2	studies.	
7. Shading Control Systems	2		

Bibliography

- 1. N C Jagan, "Control Systems", BS Publications, 1st Edition, 2007.
- 2. A Anand Kumar, "Control Systems", PHI Learning, 1st Edition, 2007.
- 3. Schneider Electric, Manualul instalațiilor electrice, 2007;
- 4. <u>https://www.se.com/ro/ro/work/products/building-automation-and-control/</u>
- 5. https://www.researchgate.net/
- 6. https://www.electrical4u.com/

8.2. Laboratory	Number of hours	Teaching methods	Notes
1. Understanding the Control Systems for Smart Homes	2		
2. Proposing a Smart Home Control System Concept -	2	Modeling	
groups of four students		execution,	
3. Detailed Design and Utilisation Instructions	4	computer	
4. Smart Readiness Indicator – SRI calculation	2	exercises, group	
5. Concept Presentation	4	project	

Bibliography

- 1. G. M. Masters, Renewable and Efficient Electric Power Systems, John Wiley & Sons, 2013.
- 2. D. Callaway and I. Hiskens, "Achieving controllability of electric loads," Proceedings of the IEEE, vol. 99, no. 1, pp. 184 –199, jan. 2011.
- 3. Schneider Electric, Manualul instalațiilor electrice, 2007;
- 4. <u>https://www.se.com/ro/ro/work/products/building-automation-and-control/</u>
- 5. DialuxEvo software free dowmnload at <u>www.dial.de</u>

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The competences achieved are necessary in the field of electrical design of the future urban electrical infrastructures. The demands of the energetic employees are being satisfied.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 CourseTechnical content, word count, structure and critical analysis;		Final report grade	60%				
10.5 Laboratory Technical content, presentation and communication skills;		class activity, assignments, presentation grade	40%				
10.6 Minimum standard of performance							
5 points out of 10	5 points out of 10 total points (5 min/10 max)						

Date of filling in:		Title Surname Name	Signature
12.06.2025	Lecturer	Assoc. Prof. PhD Eng. Calin Ciugudeanu	
	Teachers in charge of	Assoc. Prof. PhD Eng. Calin Ciugudeanu	
	application		

Date of approval in the Department of Building Services	Head of department
Engineering	Assoc.Prof.PhD.Eng. Ciprian BACOŢIU
19.06.2025	
Date of approval in the Council of the Faculty of Building	Dean
Services Engineering	Assoc.Prof.PhD.Eng. Florin DOMNIȚA
19.06.2025	